
ORIGINAL RESEARCH • GASTROINTESTINAL IMAGING

The prevalence of nonalcoholic fatty liver disease 
(NAFLD), the leading cause of chronic liver disease 

worldwide, has increased considerably over the past 2 de-
cades (1). NAFLD ranges from isolated hepatic steatosis, 
the key histologic feature of NAFLD, to nonalcoholic 
steatohepatitis, advanced fibrosis, cirrhosis, and even he-
patocellular carcinoma (2–4). NAFLD is also associated 
with metabolic syndrome and cardiovascular disease, such 
as coronary artery disease or atherosclerosis (5,6). Because 
timely management of hepatic steatosis can arrest or re-
verse the disease before irreversible changes occur, early de-
tection and accurate staging of hepatic steatosis is clinically 
important in patients with NAFLD (3,7).

Although liver biopsy remains the reference standard 
for diagnosing NAFLD, its invasiveness and error rate 

necessitates development of a noninvasive diagnostic and 
monitoring method for hepatic steatosis (8). MRI-based 
techniques, including MRI proton density fat fraction 
(PDFF) measurement, can accurately and reproducibly 
quantify hepatic fat (9) but are not widely applied due to 
high cost and low accessibility. US is widely used for di-
agnosing hepatic steatosis, given its availability and cost-
effectiveness. However, conventional B-mode US has 
drawbacks, such as its qualitative and subjective nature and 
modest accuracy, particularly in mild steatosis, where less 
than 30% of hepatocytes are affected (8,10).

To overcome these drawbacks of conventional B-mode 
US, quantitative US (QUS) techniques using raw radio-
frequency data, which provide more comprehensive in-
formation about tissue composition, have been developed 
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tion using the MRI PDFF as the reference standard. This study 
was supported by a research grant from Samsung Medison. One 
author (G.L.) is an employee of the industry; however, the non-
employee authors had control of the data and information sub-
mitted for publication.

From July 2020 to June 2021, participants who were 18 years 
or older, who were referred to the radiology department for liver 
US evaluation for known or clinically suspected NAFLD or were 
scheduled to undergo hepatectomy for liver donation, and who 
had signed informed consent were prospectively enrolled. The 
exclusion criteria were as follows: (a) clinical, laboratory, or his-
tologic evidence of liver disease other than NAFLD; (b) excessive 
alcohol consumption (≥14 and ≥7 drinks per week for men and 
women, respectively); (c) hepatotoxic or steatogenic medication 
use; (d) previous liver surgery; (e) contraindication for MRI; and 
(f ) missing QUS or MRI data (Fig 1). Anthropometric data, in-
cluding age, sex, body mass index, and biochemical tests that 
included aspartate aminotransferase and alanine aminotransfer-
ase levels, were recorded by nonauthor study coordinators. All 
participants underwent US examination and chemical shift– 
encoded MRI PDFF assessment on the same day whenever pos-
sible, or within a 14-day period.

US Data Acquisition

US examination and US radiofrequency data acquisition.—
All participants underwent liver US examination with an RS85 
system (Samsung Medison) with a convex probe (CA1-7) 
performed by one of two abdominal radiologists (S.K.J. and 
J.M.L., each with more than 8 years of abdominal US experi-
ence) who were blinded to MRI PDFF results. All participants 
were requested to fast at least 4 hours before the US examina-
tion. Participants were positioned supine with the right arm 
abducted during examination. Using a right intercostal plane 
near the hepatic hilum, the representative hepatic parenchyma 
of the right liver was visualized, avoiding major vasculature or 
focal liver lesions. A radiologist made five data acquisitions at the 
same location in the right liver lobe during a breath hold with 
a fixed set of time-gain compensation and focus position, and 
the radiofrequency data were automatically recorded. During 
US examination, visual hepatic steatosis scores were determined 
by the operator using the Hamaguchi scoring system, whereby 
0 indicates none, 1 indicates mild, 2 indicates moderate, and 3 
indicates severe steatosis (21) (Fig S1).

(11–14). Various radiofrequency data–driven QUS parameters, 
such as the attenuation coefficient and backscatter coefficient, 
correlate significantly with hepatic steatosis and have good diag-
nostic performance (89.0%–96.4%) (11,13,15,16). Moreover, 
a multivariable logistic regression model using various QUS pa-
rameters has yielded high diagnostic accuracy for steatohepatitis 
and hepatic steatosis (12,17).

Deep learning–based US approaches have recently been 
introduced for hepatic steatosis assessment (18,19) and can 
improve the diagnostic performance of QUS. Additionally, 
deep learning–based two-dimensional (2D) convolutional 
neural networks (CNNs) can provide high accuracy and ro-
bustness by adopting 2D images as input data (20). We hy-
pothesized that a 2D CNN algorithm can help improve the 
diagnostic performance of QUS using multiple QUS para-
metric maps and B-mode images as input data, thus allowing 
a multiparametric approach.

Therefore, we aimed to develop and prospectively validate a 
2D CNN algorithm using QUS parametric maps and B-mode 
images for diagnosing hepatic steatosis, with the MRI-derived 
PDFF as the reference standard, in patients with NAFLD.

Materials and Methods

Study Design and Participants
This prospective study was conducted at Seoul 
National University Hospital, an academic tertiary 
care center in Korea (ClinicalTrials.gov registration 
no. NCT04462562). The institutional review board 
approved this prospective study (IRB no. 2002–
020–1099) and all participants provided written 
informed consent. One major variable of the study 
was to evaluate the diagnostic performance of the 
deep learning algorithm for hepatic fat quantifica-

Abbreviations
AUC = area under the receiver operating characteristic curve, CNN = 
convolutional neural network, NAFLD = nonalcoholic fatty liver dis-
ease, PDFF= proton density fat fraction, QUS = quantitative US, TAI 
= tissue attenuation imaging, TSI = tissue scatter-distribution imaging, 
2D = two-dimensional, USFF = US fat fraction

Summary
A deep learning–based two-dimensional convolutional neural network 
algorithm using quantitative US parametric maps acquired from 
radiofrequency data can accurately quantify hepatic fat fraction and 
diagnose hepatic steatosis.

Key Results
	■ In 173 prospectively enrolled participants with suspected nonalco-

holic fatty liver disease, a deep learning algorithm using quantitative 
US (QUS) parametric maps and B-mode images accurately estimated 
the hepatic fat fraction, which showed excellent correlation with the 
MRI proton density fat fraction (r = 0.86, P < .001).

	■ For diagnosing hepatic steatosis, the deep learning–estimated US 
fat fraction had an area under the receiver operating characteristic 
curve of 0.97, higher than those of the QUS parameters (tissue 
attenuation imaging and tissue scatter-distribution imaging) and 
visual score (P = .015, .006, and < .001, respectively).

Figure 1:  Flowchart shows participant inclusion. PDFF = proton density fat fraction.
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QUS parametric map genera-
tion using US radiofrequency 
data.—Two QUS parameters, 
tissue attenuation imaging (TAI) 
and tissue scatter-distribution 
imaging (TSI), were computed 
from the US radiofrequency 
data, and TAI and TSI maps 
were created. The TAI map was 
a pixel-by-pixel map of the lo-
cal center frequency associated 
with US attenuation properties 
(22,23). The TSI map consisted 
of local Nakagami parameters, 
which reflect the arrangement 
and concentration of scatterers 
within the tissue (24,25). The 
theories underlying these two 
parameters are summarized in 
Appendix S1.

Measurement of QUS param-
eters.—Measurement of the 
two QUS parameters (TAI and TSI) was performed during 
US examination with the RS85 machine (Samsung Medison). 
For measurement, a 2 × 3–cm fan-shaped region of interest 
was placed on the right liver lobe at least 2 cm below the liver 
capsule, avoiding areas with large vessels, focal lesions, and rever-
beration artifacts or shadowing according to vendor recommen-
dations. Areas with errors in the calculation of parameters, such 
as vascular structures, were automatically excluded and present 
as vacant on the TAI and TSI maps. Additionally, the reliabil-
ity of measurements are presented as an R2 value, such that the 
operator attempted to obtain values with an R2 greater than or 
equal to 0.6. For each QUS parameter, the five measurements 
were averaged as the representative value for each participant ac-
cording to vendor recommendations (Fig S2). The distributions 
of TAI and TSI are plotted in Figure S3.

Two-dimensional CNN Algorithm for Hepatic Fat 
Quantification
To train the deep learning–based 2D CNN algorithm, we 
used raw US radiofrequency data that were collected in a pre-
vious prospective study (ClinicalTrials.gov registration no. 
NCT04180631), which evaluated the performance of QUS 
parameters (calculated values) using radiofrequency data analy-
sis for assessing hepatic steatosis in NAFLD (n = 120) (13). B-
mode images and QUS parametric maps (TAI and TSI; ie, 2D 
data) derived from the radiofrequency data of all participants 
(120 of 120) in the previous study were used as the training 
and internal validation sets of the 2D CNN algorithm for he-
patic fat quantification. In the present study, the performance 
of the 2D CNN algorithm was prospectively tested. Data of 
the 120 participants were only used for training and internal 
validation of the 2D CNN algorithm, not for the prospective 
test of its performance, and there was no overlap between train-
ing, internal validation, and test set participants (Table S1).

The CNN was configured to extract feature information 
from each input using a visual geometry group network, then 
concatenate these and derive a regression output through a 
fully connected layer (Fig 2). Details for development of the 
2D CNN algorithm are presented in Appendix S2 and Table 
S2), and the code is available for research use at https://github.
com/SamsungLabs/NAFLD. Three inputs from one US radiofre-
quency data set (B-mode image, TAI map, and TSI map) gener-
ated one output, which was the deep learning–estimated US fat 
fraction (USFF) presented as a percentage. As each participant 
had five US images, the 2D CNN algorithm generated five  
outputs per participant, which were averaged to yield per- 
participant estimates. Additionally, a 2D CNN algorithm using 
only QUS parametric maps (TAI and TSI maps), without B-mode 
images, as input data was developed separately and an estimated 
hepatic fat fraction was generated. The results are summarized 
in Appendix S3 and Figure S4. Deep CNN processing was per-
formed using Python version 3.6.9 (Python Software Founda-
tion; https://www.python.org/psf/) and TensorFlow version 1.10.0 
(https://www.tensorflow.org/install/source).

Reference Standard: Chemical Shift–encoded MRI PDFF
Chemical shift–encoded MRI PDFF estimation was used as the 
reference standard because it is a well-validated, accurate, and 
safe method for assessing hepatic steatosis and is thus widely used 
as a reference standard for quantifying hepatic fat content (4,26).

All participants underwent chemical shift–encoded MRI 
PDFF assessment with a 3-T MRI scanner (MAGNETOM 
Skyra; Siemens Healthineers). Details of the MRI protocol and 
parameters are summarized in Appendix S4. One abdominal ra-
diologist (J.S.K.), who was blinded to laboratory test and USFF 
results, manually placed a 1-cm-diameter circular region of in-
terest in each of the nine Couinaud liver segments of the PDFF 
map (27). Averaged values from liver segment five through eight 

Figure 2:  Schematic shows development of the two-dimensional convolutional neural network algorithm for estimating 
the hepatic fat fraction. B-mode images and tissue attenuation imaging (TAI) and tissue scatter-distribution imaging (TSI) 
maps generated from analysis of radiofrequency data are used as input data. Three input data sets (B-mode image, TAI 
map, and TSI map) generate one output, which is the deep learning–estimated US fat fraction (USFF). C = convolutional 
layer, FC = fully connected layer, P = pooling layer.
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were calculated and used as the reference hepatic fat content 
value to match the USFF and QUS data that were obtained 
from the right hepatic lobe (28). As previously proposed, the 
degree of hepatic steatosis was graded as mild (S1), moderate 
(S2), and severe (S3) at MRI PDFF thresholds of 5%, 15%, and 
25%, respectively (4).

Statistical Analysis
The sample size was estimated based on one of the major vari-
ables of the study, which evaluated the diagnostic accuracy of 
three parameters. Details of sample size estimation are presented 
in Appendix S5.

The 2D CNN algorithm was evaluated at the participant 
level. The mean USFF values according to hepatic steatosis 
grade were compared using one-way analysis of variance with 

the Tukey post hoc test. The Pearson correlation coefficient was 
calculated to evaluate the USFF and MRI PDFF correlation. 
Bland-Altman analysis with 95% limits of agreement was ad-
ditionally performed. Linearity was evaluated using a sequen-
tial test of polynomial fits (three-degree and two-degree poly-
nomial linear regression) to plot the USFF versus MRI PDFF 
(29). When the linearity test over the entire MRI PDFF range 
failed, the linear range was identified by finding an MRI PDFF 
range in which the coefficients of nonlinear terms of the three-
degree and two-degree polynomial fits were not statistically 
significantly different from zero. The linear regression slope, in-
tercept, and R2 were evaluated using linear regression analysis, 
and quadratic regression analysis was also performed. Receiver 
operating characteristic curve analysis was used to evaluate the 
performance of the USFF, QUS parameters (TAI and TSI), 
and visual score for evaluating hepatic steatosis based on MRI 
PDFF values greater than or equal to 5%, greater than or equal 
to 15%, and greater than or equal to 25%. The DeLong test 
was used to compare areas under the receiver operating char-
acteristic curve (AUCs) of the USFF and QUS parameters or 
visual score. For comparison of AUCs, a Bonferroni-adjusted  
P < .017 (0.05/3) was considered to indicate a statistically 
significant difference. Optimal cutoff values for USFF, TAI, 
and TSI were determined using the maximal Youden index 
(30), with performance parameters including sensitivity, speci-
ficity, positive predictive value, and negative predictive value 
for evaluating hepatic steatosis based on MRI PDFF values 
greater than or equal to 5%, greater than or equal to 15%, and 
greater than or equal to 25%. USFF cutoff values for sensitivity 
and specificity exceeding 90% were also derived. Ninety per-
cent winsorization was used to adjust outliers for USFF, TAI, 
and TSI scatterplots (Appendix S6) (31). All statistical analy-
ses were performed using MedCalc version 18.11.6 (MedCalc 
Software) and SAS version 9.4 (SAS Institute). P < .05 was 
considered indicative of a statistically significant difference, ex-
cept for the aforementioned AUC comparison.

Results

Participant Characteristics
In total, 216 participants were screened and 43 were excluded 
due to refusal of study participation (n = 14) or lack of MRI 
scans due to scheduling issues (n = 29). Finally, 173 participants 
(mean age, 51 years ± 14 [SD]; 96 men) were included in the 
study (Fig 1). The mean MRI PDFF was 11.2% ± 7.8 (range, 
1.5%–46.4%). A total of 126 participants had hepatic steatosis 

Table 1: Participant Characteristics

Characteristic Value (n = 173)
Age (y)* 51 ± 14 (19–74)
Sex
  M 96 (56)
  F 77 (45)
Participants with clinically suspected  

or known NAFLD
148 (86)

Body mass index (kg/m2)* 26.5 ± 3.5 (19.2–39.8)
Skin-to-liver capsule distance (mm)* 20.7 ± 4.3
Aspartate aminotransferase level (IU/L)* 28.7 ± 14.1 (9–99)
Alanine aminotransferase level (IU/L)* 39.2 ± 31.4 (7–211)
Hepatic steatosis visual score
  S0 55 (32)
  S1 29 (17)
  S2 66 (38)
  S3 23 (13)
MRI PDFF (%)* 11.2 ± 7.8 (1.5–46.4)
  <5% 47 (27)
  ≥5 to <15% 79 (46)
  ≥15% to <25% 37 (21)
  ≥25% 10 (6)

Note.—Except where indicated, data are numbers of 
participants, with percentages in parentheses. For hepatic 
steatosis visual scoring, S0 indicates none, S1 indicates mild, S2 
indicates moderate, and S3 indicates severe steatosis. NAFLD 
= nonalcoholic fatty liver disease, PDFF = proton density fat 
fraction.
* Data are means ± SDs, with ranges in parentheses.

Table 2: Distribution of Deep Learning–based USFF according to Hepatic Steatosis Grade

Parameter
MRI PDFF 

P Value
Post Hoc P Value

<5% (S0) 5%–15% (S1) 15%–25% (S2) ≥25% (S3) S0 vs S1 S1 vs S2 S2 vs S3
USFF (%) 3.5 ± 1.8 9.8 ± 3.7 16.7 ± 2.8 20.4 ± 3.2 <.001 <.001 <.001 .006

Note.—Except where indicated, data are means ± SDs. MRI PDFF thresholds indicate the hepatic steatosis grade such that S0 indicates 
none, S1 indicates mild, S2 indicates moderate, and S3 indicates severe steatosis. Post hoc P values were calculated using one-way analysis 
of variance with the Tukey post hoc test. USFF = US fat fraction, PDFF = proton density fat fraction.
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(MRI PDFF ≥5%). The median interval between US and MRI 
was 0 days (range, 0–14 days [IQR, 0–0 days]). Participant char-
acteristics are summarized in Table 1.

Correlation between USFF and MRI PDFF
The distribution of USFF according to hepatic steatosis grade 
is summarized in Table 2. The USFF showed a correlation with 
the MRI PDFF (r = 0.86, 95% CI: 0.82, 0.90; P < .001). The 
USFF and MRI PDFF showed linearity for an MRI PDFF value 
less than or equal to 18%. Within the linear range (MRI PDFF 
≤18%), linear regression analysis of the USFF against the MRI 
PDFF revealed a slope of 0.92 (95% CI: 0.83, 1.01), an inter-
cept of 0.76 (95% CI: −0.11, 1.63), and an R2 of 0.74 (Pearson, 
r = 0.86). The slope and intercept were not significantly different 
from 0 and 1, respectively (P = .08 and .09, respectively). For the 
entire MRI PDFF range (MRI PDFF <47%), regression analysis 
of the USFF against the MRI PDFF demonstrated an R2 of 0.74 
in the linear model and a polynomial R2 of 0.83 in the quadratic 
regression model (Fig 3). The mean bias of the USFF over the 
entire MRI PDFF range was −0.97% (P = .002), and 95% limits 
of agreement ranged from −8.8% to 6.9% (Fig 4).

Diagnostic Performance of USFF for Evaluating Hepatic 
Steatosis
The USFF AUCs for evaluating hepatic steatosis based on MRI 
PDFF values greater than or equal to 5%, greater than or equal 
to 15%, and greater than or equal to 25% were 0.97 (95% CI: 
0.93, 0.99; P < .001), 0.96 (95% CI: 0.92, 0.99; P < .001), and 
0.95 (95% CI: 0.90, 0.97; P < .001), respectively. Cutoff values 
and the corresponding sensitivity, specificity, positive predictive 
value, and negative predictive value are shown in Table 3.

For diagnosing hepatic steatosis (MRI PDFF ≥5%), the 
USFF showed a sensitivity of 90% (114 of 126; 95% CI: 84, 
95) and specificity of 91% (43 of 47; 95% CI: 80, 98) at the 
optimal cutoff value of 5.7%. Using the cutoff value of 5.7%, 
the positive predictive value and negative predictive value were 
97% (114 of 118; 95% CI: 92, 99) and 78% (43 of 55; 95% CI: 
68, 86), respectively. For diagnosing moderate to severe hepatic 

steatosis (MRI PDFF ≥15%), the USFF had a sensitivity of 89% 
(42 of 47; 95% CI: 77, 97), specificity of 91% (115 of 126; 95% 
CI: 85, 96), positive predictive value of 79% (42 of 53; 95% CI: 
68, 87), and negative predictive value of 96% (115 of 120; 95% 
CI: 91, 98) at the optimal cutoff of 14.1%.

Comparison of Diagnostic Performance between USFF, QUS 
Parameters, and Visual Score for Hepatic Steatosis
Performance of the USFF, QUS parameters (TAI and TSI), and 
visual score for evaluating hepatic steatosis based on MRI PDFF 
values greater than or equal to 5%, greater than or equal to 15%, 
and greater than or equal to 25% is summarized in Table 4.

For evaluating hepatic steatosis based on MRI PDFF values 
greater than or equal to 5% and greater than or equal to 15%, 
the USFF had greater AUCs than TAI, TSI, and visual scoring, 
respectively (USFF vs TAI, TSI, and visual scoring: 0.97 [95% 
CI: 0.93, 0.99] vs 0.92 [95% CI: 0.87, 0.95], 0.91 [95% CI: 
0.85, 0.94], and 0.84 [95% CI: 0.77, 0.89], P = .015, .006, 

Figure 3:  Scatterplots of the deep learning–estimated US fat fraction (USFF) versus the MRI proton density fat fraction (PDFF) show (A) the entire MRI PDFF range (MRI 
PDFF <47%) and (B) the linear range (MRI PDFF ≤18%), as well as the identity line and the linear regression line.

Figure 4:  Bland-Altman plot shows the difference between the deep learn-
ing–estimated US fat fraction (USFF) and the MRI-derived proton density fat 
fraction (PDFF).
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and < .001, respectively, for MRI PDFF ≥5%; and 0.96 [95% 
CI: 0.92, 0.99] vs 0.91 [95% CI: 0.86, 0.95], 0.84 [95% CI: 
0.78, 0.89], and 0.83 [95% CI: 0.77, 0.89], P = .009, < .001, 
and .002, respectively, for MRI PDFF ≥15%). For evaluating 
hepatic steatosis based on MRI PDFF values greater than or 
equal to 5%, the USFF AUC was not different than those of 
TAI, TSI, and visual scoring (P = .18, .02, and .72, respec-
tively) (Fig 5).

Discussion
In recent years, there have been several efforts for noninvasive 
evaluation of hepatic steatosis in nonalcoholic fatty liver disease 
(NAFLD). Among various techniques, quantitative US (QUS) 
has an advantage in that it can provide more information about 
liver tissue composition by using raw radiofrequency data. A 
deep learning approach has potential to improve the perfor-
mance of QUS but has not been well investigated. Thus, in the 
present study, we prospectively validated the diagnostic perfor-
mance of a two-dimensional convolutional neural network al-
gorithm using B-mode images and QUS parametric maps gen-
erated from US radiofrequency data for assessment of hepatic 
steatosis in patients with NAFLD, with the MRI proton density 
fat fraction (PDFF) as the reference standard. Our study results 
demonstrated that the deep learning–estimated US fat fraction 
(USFF) showed a strong correlation with the MRI PDFF (Pear-
son, r = 0.86; P < .001) and demonstrated excellent diagnostic 
performance for various stages of hepatic steatosis, from an MRI 

PDFF greater than or equal to 5% to an MRI PDFF greater than 
or equal to 25% (areas under the receiver operating character-
istic curve, 0.95–0.97). Moreover, the diagnostic performance 
of the algorithm for hepatic steatosis (MRI PDFF ≥5%) was 
excellent and significantly higher than that of the QUS param-
eters (tissue attenuation imaging and tissue scatter-distribution 
imaging) and that of the subjective visual score (0.97 vs 0.92, 
0.91, and 0.84; P = .015, .006, and < .001, respectively). Our 
study has demonstrated that the application of a deep learning 
algorithm can improve the performance of QUS parameters for 
diagnosing hepatic steatosis. Given the excellent performance of 
our algorithm, the USFF holds promise as a noninvasive and 
accurate screening tool for hepatic fat quantification in patients 
with NAFLD.

In our study, the USFF yielded high performance for diag-
nosis and staging of hepatic steatosis, comparable to or better 
than that reported in previous studies that used B-mode images 
(18,32) or radiofrequency signals (19) as input data in deep 
learning algorithms. The excellent diagnostic performance of 
the USFF could be attributed to the use of the QUS paramet-
ric map as the input data for the 2D CNN algorithm. QUS 
parametric maps derived from radiofrequency data analysis 
can provide more information about liver tissue composition, 
which can be lost during B-mode image generation (17). Fur-
thermore, as radiofrequency data are not affected by dynamic 
range and filtering settings (12), using the QUS parametric map 
as the input data of the 2D CNN algorithm may be valuable 

Table 3: Diagnostic Performance of Deep Learning–based USFF for Hepatic Steatosis

Hepatic Fat Content AUC Cutoff (%) Sensitivity* Specificity* PPV* NPV*
MRI PDFF ≥5% 0.97 [0.93, 0.99]
  Optimal threshold† >5.7 90 (114/126) 

[84, 95]
91 (43/47) 

[80, 98]
97 (114/118) 

[92, 99]
78 (43/55) 

[68, 86]
  Threshold for 90% sensitivity >5.7 90 (114/126) 

[84, 95]
91 (43/47) 

[80, 98]
97 (114/118) 

[92, 99]
78 (43/55) 

[68, 86]
  Threshold for 90% specificity >5.7 90 (114/126) 

[84, 95]
91 (43/47) 

[80, 98]
97 (114/118) 

[92, 99]
78 (43/55) 

[68, 86]
MRI PDFF ≥15% 0.96 [0.92, 0.99]
  Optimal threshold† >14.1 89 (42/47) 

[77, 97]
91 (115/126) 

[85, 96]
79 (42/53) 

[68, 87]
96 (115/120) 

[91, 98]
  Threshold for 90% sensitivity >12.6 91 (43/47) 

[80, 97]
87 (110/126) 

[80, 93]
73 (43/59) 

[63, 81]
96 (110/114) 

[92, 99]
  Threshold for 90% specificity >14.1 89 (42/47) 

[77, 97]
91 (115/126) 

[85, 96]
79 (42/53) 

[68, 87]
96 (115/120) 

[91, 98]
MRI PDFF ≥25% 0.95 [0.90, 0.97]
  Optimal threshold† >16.7 100 (10/10) 

[70, 100]
87 (142/163) 

[81, 92]
32 (10/31) 

[24, 42]
100 (142/142) 

[97, 100]
  Threshold for 90% sensitivity >16.7 100 (10/10) 

[70, 100]
87 (142/163) 

[81, 92]
32 (10/31) 

[24, 42]
100 (142/142) 

[97, 100]
  Threshold for 90% specificity >20.0 60 (6/10) 

[26, 88]
96 (156/163) 

[92, 99]
46 (6/13) 

[26, 68]
98 (156/160) 

[95, 99]

Note.—Data in brackets are 95% CIs. AUC = area under the receiver operating characteristic curve, NPV = negative predictive value, 
PDFF = proton density fat fraction, PPV = positive predictive value, USFF = US fat fraction.
* Except as otherwise indicated, data are percentages, with numerators and denominators in parentheses.
† Optimal threshold–indicated cutoff values that maximize the Youden index.
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for developing robust algorithms for assessing hepatic steatosis. 
Although B-mode images can be affected by dynamic range and 
filtering settings, the magnitude of effect of those technical con-
founders could be minimized by data acquisition using a fixed 
set of time-gain compensation and focus position. As each QUS 
parameter and B-mode image depicts different tissue characteris-
tics (ie, TAI, TSI, and B-mode images indicate attenuation, scat-
tering distribution of signals, and brightness, respectively), the 
combined interpretation of those QUS parameters and B-mode 
images may provide more comprehensive tissue composition in-
formation. Of note, the use of a 2D CNN in our study enabled 
fine-tuning of large input data, achieving higher performance for 
diagnosis of hepatic steatosis.

Our study demonstrated significantly higher performance of 
the USFF than the QUS parameters or subjective visual score in 
evaluating hepatic steatosis based on MRI PDFF values greater 
than or equal to 5% and greater than or equal to 15%. Apply-
ing the 2D CNN algorithm and QUS parametric maps may 
overcome the modest performance of conventional US, which is 
commonly used as a first-line tool for assessing hepatic steatosis. 

Of note, the higher sensitivity of the USFF than that of the visual 
score may be more helpful in screening patients with clinically 
suspected NAFLD. Additionally, as the results can be presented 
as continuous quantitative values, the USFF can be helpful for 
longitudinal follow-up or treatment monitoring, although the 
reproducibility of the results should be further investigated.

We demonstrated that the USFF correlated strongly and 
linearly with MRI PDFF values less than or equal to 18%. 
However, for MRI PDFF values greater than 18%, a possible 
saturation effect was observed, which was consistent with the 
findings of Han et al (12). Indeed, previous studies also reported 
that QUS parameters were saturated in severe hepatic steatosis 
(12,13,33). Saturation of QUS parameters can be explained by 
the inherent limitations of US signals, which become weak and 
insensitive in severe hepatic steatosis, as it is already severely at-
tenuated in the nearfield. Considering the saturation effects in 
severe hepatic steatosis, the USFF should be cautiously inter-
preted in the range of MRI PDFF values greater than 18%, and 
the application of the parameter itself is limited, although it may 
be directly applicable for MRI PDFF values less than or equal 

Table 4: Comparison of Diagnostic Performance Between USFF, QUS Parameters, and Visual Score for Hepatic Steatosis

Hepatic Fat Content AUC Cutoff Sensitivity* Specificity* PPV* NPV*
USFF (%)
  MRI PDFF ≥5% 0.97 [0.93, 0.99] >5.7 90 (114/126) 

[84, 95]
91 (43/47) 

[80, 98]
97 (114/118) 

[92, 99]
78 (43/55) 

[68, 86]
  MRI PDFF ≥15% 0.96 [0.92, 0.99] >14.1 89 (42/47) 

[77, 97]
91 (115/126) 

[85, 96]
79 (42/53) 

[68, 87]
96 (115/120) 

[91, 98]
  MRI PDFF ≥25% 0.95 [0.90, 0.97] >16.7 100 (10/10) 

[70, 100]
87 (142/163) 

[81, 92]
32 (10/31) 

[24, 42]
100 (142/142) 

[97, 100]
TAI (dB/cm/MHz)
  MRI PDFF ≥5% 0.92 [0.87, 0.95] >0.72 83 (104/126) 

[75, 89]
91 (43/47) 

[80, 98]
96 (104/108) 

[91, 99]
66 (43/65) 

[57, 74]
  MRI PDFF ≥15% 0.91 [0.86, 0.95] >0.83 79 (37/47) 

[64, 89]
91 (115/126) 

[85, 96]
77 (37/48) 

[65, 86]
92 (115/125) 

[87, 95]
  MRI PDFF ≥25% 0.90 [0.84, 0.94] >0.86 100 (10/10) 

[69, 100]
80 (130/163) 

[73, 86]
23 (10/43) 

[18, 29]
100 (130/130) 

[97, 100]
TSI
  MRI PDFF ≥5% 0.91 [0.85, 0.94] >95.6 83 (105/126) 

[76, 89]
79 (37/47) 

[64, 89]
91 (105/115) 

[84, 95]
64 (37/58) 

[54, 73]
  MRI PDFF ≥15% 0.84 [0.78, 0.89] >98.4 94 (44/47) 

[90, 99]
64 (81/126) 

[55, 73]
49 (44/89) 

[43, 56]
96 (81/84) 

[90, 99]
  MRI PDFF ≥25% 0.81 [0.75, 0.87] >98.9 100 (10/10) 

[69, 100]
54 (88/163) 

[46, 62]
12 (10/85) 

[10, 14]
100 (88/88) 

[96, 100]
Visual score
  MRI PDFF ≥5% 0.84 [0.77, 0.89] ≥1 

(mild)
87 (109/126) 

[79, 92]
81 (38/47) 

[67, 91]
92 (109/118) 

[87, 96]
69 (38/55) 

[59, 78]
  MRI PDFF ≥15% 0.83 [0.77, 0.89] ≥2 

(moderate)
100 (47/47) 

[93, 100]
67 (84/126) 

[58, 75]
53 (47/89) 

[47, 59]
100 (84/84) 

[80, 100]
  MRI PDFF ≥25% 0.91 [0.85, 0.95] ≥3 

(severe)
90 (9/10) 

[56, 100]
91 (149/163) 

[86, 95]
39 (9/23) 

[27, 53]
99 (149/150) 

[96, 100]

Note.—Data in brackets are 95% CIs. Cutoff values for the deep learning–based USFF and the QUS parameters (TAI and TSI) were 
determined using the maximal Youden index. AUC = area under the receiver operating characteristic curve, NPV = negative predictive 
value, PDFF = proton density fat fraction, PPV = positive predictive value, QUS = quantitative US, TAI = tissue attenuation imaging, TSI 
= tissue scatter-distribution imaging, USFF = US fat fraction.
* Except as otherwise indicated, data are percentages, with numerators and denominators in parentheses.
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to 18%. In addition, efforts to minimize the saturation effect by 
applying a multiparametric approach, including speed of sound, 
dispersion, or texture analysis, would be valuable, and further 
studies are warranted.

Our study had several limitations. First, because all US data 
were obtained from a single scanner, further studies for assess-
ing cross-platform generalizability are needed. Second, cur-
rently, radiofrequency data acquisition is not readily available 
in all clinical US systems; however, with most manufacturers 
beginning to provide radiofrequency acquisition capabilities, 
this may be widely available in the near future. Third, our study 
evaluated the performance of a deep learning algorithm that 
used both QUS parametric maps and B-mode images as in-
put data, and the performance of the algorithm using B-mode 

images alone was not evaluated. Fourth, potential confounders, 
such as inflammation or fibrosis, could not be assessed. Fifth, 
the effect of body mass index and skin-to-liver capsule distance 
on the performance of the algorithm was not investigated, and 
further analysis with various ranges of body mass indexes and 
skin-to-liver capsule distances are needed. Finally, the reported 
sensitivity and specificity of the USFF in detecting various de-
grees of hepatic steatosis are likely to be overestimated as they 
were determined from data using a cutoff that was optimized 
for the same data. Further external validation of our study is 
needed in terms of the performance and reproducibility of the 
deep learning algorithm.

In conclusion, a deep learning algorithm that used quantita-
tive US parametric maps and B-mode images could accurately 

Figure 5:   Receiver operating characteristic curves show the diagnostic per-
formance of the deep learning–estimated US fat fraction (USFF), quantitative US 
parameters (tissue attenuation imaging [TAI] and tissue scatter-distribution imaging 
[TSI]), and visual score for evaluating hepatic steatosis based on MRI proton density 
fat fraction (PDFF) values (A) ≥5%, (B) ≥15%, and (C) ≥25%. The USFF showed 
significantly higher performance than TAI, TSI, and visual scoring for MRI PDFF values 
≥5% and ≥15%. AUC = area under the receiver operating characteristic curve.
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estimate the hepatic fat fraction and diagnose hepatic steatosis in 
nonalcoholic fatty liver disease. Further studies using histologic 
results as a reference standard are warranted to assess potential 
confounders, such as inflammation or fibrosis.
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