Gonadotropin role & administration strategies in 2009: bases & new trends

Salvador, Brazil - May 8-9, 2009

Physiological aspects of ovarian LH/ FSH receptors

Manuela Simoni

Physiological aspects of ovarian LH/FSH receptors

Manuela Simoni

Dep. of Medicine, Endocrinology, Metabolism and Geriatrics

University of Modena and Reggio Emilia, Italy manuela.simoni@unimore.it

Hormonal control of ovarian function

Outline

- Physiology of follicular maturation
- FSH and the FSHR
- Mutations and polymorphisms
- Physiological effects of FSHR SNP
- LH, hCG and the LHCGR
- Mutations and polymorphisms
- Can the LHCGR distinguish between LH and hCG?

Outline

- Physiology of follicular maturation
- FSH and the FSHR
- Mutations and polymorphisms
- Physiological effects of FSHR SNP
- LH, hCG and the LHCGR
- Mutations and polymorphisms
- Can the LHCGR distinguish between LH and hCG?

Follicular selection is gonadotropin-dependent

Fauser & Van Heusden, Endocr. Reviews 18:71, 1997

Follicle recruitment and selection

McGee & Hsueh, Endocr. Reviews 21:200, 2000

FSH: 3D structure

FSH-FSHR interaction

FSH-FSHR interaction

extracellular domain

transmembrane domain

intracellular domain – G protein

Signal transduction pathway of the FSH receptor

FSHR

Expression of the FSH receptor during the estrous cycle

Mutations and polymorphisms of the FSHR

Lussiana et al., 2008

Pedigree of four Finnish families with hereditary hypergonadotropic ovarian failure

Primary follicles in the ovaries of women with inactivating mutations of the FSHR

Aittomäki et al., JCE&M 1996

Consequences of inactivating mutations of the FSHR

Ala189→Val	Altered signal transduction (cAMP, IP ₃) after	
	FSH-FSHR binding	_
	Hypergonadotropic amenorrhea (homozygous)	
	Secondary amenorrhea (heterozygous)	-
Asn191→lle	Altered signal transduction (cAMP) after	
	FSH-FSHR binding	
	Hypergonadotropic amenorrhea (homozygous)	
	No clinical signs (heterozygous)	
lle160→Thr	Altered FSHR expression on the cell surface	
	Secondary amenorrhea (heterozygous)	
Arg573→Cys	Altered signal transduction (cAMP) after	
	FSH-FSHR binding	
	Secondary amenorrhea (heterozygous)	
Asp224→Val	Altered signal transduction (cAMP) after	
	FSH-FSHR binding	
Leu601→Val	Primary amenorrhea (when both mutations are associated)	
Pro348→Ara	Totally impaired FSHR-FSH binding	
	Primary amenorrhea and POF (homozygous)	٦
	Minor abnormalities of the internal genitalia	
	(heterozygous)	
Ala419→Thr	Altered signal transduction (cAMP) after	
	FSH-FSHR binding	
	Primary amenorrhea (heterozygous)	
Pro519→Thr	Altered FSHR expression on the cell surface	
110010	Primary amenorrhea and POF (homozygous)	
Phe591→Ser	Altered signal transduction (cAMP) after	
	Primary amonorrhop and POE (homory/caus)	
	Prodice solition to solition during to mark	
	(heterozygous)	Luss

Lussiana et al., 2008

Consequences of activating mutations of the FSHR

Asp567→Asn	FSHR increased sensibility to FSH or hCG			
	Spontaneous or iatrogenic ovarian			
	hyperstimulation syndrome (OHSS)			
Thr449→lle	FSHR increased sensibility to FSH, hCG or TSH			
Thr449→Ala	Spontaneous or iatrogenic ovarian			
	hyperstimulation syndrome (OHSS) even due to hypothyroidism			
lle545→Thr	FSHR increased sensitivity to FSH, hCG or TSH			
	Spontaneous or iatrogenic ovarian hyperstimulation syndrome (OHSS) even due to hypothyroidism			
Asp567→Gly	Ligand-independent constitutive activation of FSHR			
	Normal spermatogenesis in the absence of FSH			

Lussiana et al., 2008

Mutations of the FSH receptor

Inactivating: primary or secondary amenorrhea Activating: OHSS, sensitivity to TSH

Inactivating: infertility

Activating: normal spermatogenesis without gonadotropins

Outline

- Physiology of follicular maturation
- FSH and the FSHR
- Mutations and polymorphisms
- Physiological effects of FSHR SNP
- LH, hCG and the LHCGR
- Mutations and polymorphisms
- Pathophsyological effects of LHCGR SNP

Allelic variants of the FSH receptor

(Simoni et al., JCEM 84: 751, 1999)

Over 1600 SNPs in the human FSH receptor

Ethnic distribution of SNP at codon 680 of the FSH receptor

		Sample Assertai	nment				Gen	otypes				Alleles	
ss#	Population	Individual Group	Sample (2N)	Founder (N)	Source	A/A	A/G	G/G	HWP	A	G	N	Het. +/-std err
ss11457643	3 CEPH		184		AF					0.670	0.330		
	CHMJ		74		IG				0.001	0.689	0.284	0.027	
ss24250675	AFD_EUR_PANEL	European	48	24	IG	0.417	0.458	0.125	1.000	0.646	0.354		
	AFD_AFR_PANEL	African American	46	23	IG	0.435	0.478	0.087	0.752	0.674	0.326		
	AFD_CHN_PANEL	Asian	48	24	IG	0.375	0.583	0.042	0.150	0.667	0.333		
<u>ss44231258</u>	<u> HapMap-CEU</u>	European	120	60	IG	0.467	0.400	0.133	0.439	0.667	0.333		
	HapMap-HCB	Asian	90	45	IG	0.556	0.311	0.133	0.150	0.711	0.289		
	HapMap-JPT	Asian	88	44	IG	0.364	0.523	0.114	0.479	0.625	0.375		
	HapMap-YRI	Sub-Saharan African	120	60	IG	0.200	0.517	0.283	1.000	0.458	0.542		
	AoD_African_American		90		AF	-				0.620	0.380		
	AoD_Caucasian		92		AF					0.520	0.480		
<u>ss5586543</u>	<u>P1</u>		200	100	GF	0.390	0.470	0.140	1.000	0.625	0.375		
	CAUC1		60	30	GF	0.500	0.333	0.167	0.200	0.666	0.333		
	AFR1		48	24	GF	0.250	0.625	0.125	0.200	0.562	0.438		
	HISP1		46	22.9999995231629	GF	0.348	0.565	0.087	0.294	0.631	0.370		
	PAC1		46	23	GF	0.435	0.391	0.174	0.479	0.631	0.369		
<u>ss7787</u>	WIAF-CSNP-POP1		84		AF					0.675	0.325		
T . 1 C	•		1034	554		0.092	0.339	0.401	0.038	0.126	0.004		0.628
Total 2am	pies					-				-			0.469+/-0.126

Polyn cor	norphism of the human mparison with other ani	FSH r mal s	eceptor: pecies
gene		┝┥	10 -
protein			
human 1		Thr	Asn
human 2		Ala	Ser
monkey - horse - donkey - bovine - porcine - ovine - rat - mouse - chicken -	Simoni of al. Hum Poprod Updato 2002	- Thr Ala Ala Ala Ala Ala Ile Pro Lys	Asn Asn Asn Asn Asn Asn Asn Asn Asn

Effects of FSHR SNP 680 on hormonal dynamics of menstrual cycle

- Study design: mc monitoring in volunteers recruited by newspaper adv.
- Inclusion criteria: age 18-34, regular mc (25-32 days), BMI 19-28, Caucasian
- Screened: 125
 - Heterozygous: 64 (excluded)
 - Homoz. Asn: 42
 - Homoz. Ser 22
- Completed mc monitoring: 13 Asn + 10 Ser
- Evaluated: 12 Asn + 9 Ser

Study Design

(Asn/Asn: n=12, Ser/Ser: n=9)

Serum LH levels

□ Asn/Asn ■ Ser/Ser 70 **Menstruation** 60 50 (10/L) HJ 40 30 20 10 0. -23 -22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -25 -24 -9 -8 -3 -2 -1 0 2 -7 -6 1 -5 Day relative to midcycle LH peak

N.S.

Greb et al., JCEM 90:4866, 2005

Serum FSH levels

* *P* < 0.05 ** *P* < 0.005

Estradiol levels

* *P* < 0.05 ** *P* < 0.005

Progesterone levels

* *P* < 0.05 ** *P* < 0.005

Inhibin A levels

* *P* < 0.05

Inhibin B levels

* *P* < 0.05

Ovarian Response

	Asn/Asn	Ser/Ser	
Menstrual Cycle Length (d)	25.7 ± 0.6	28.7 ± 1.1	<i>P</i> < 0.05
Luteolysis-Midcycle LH peak (d)	11.3.0 ± 0.6	13.6 ± 1.0	P < 0.05.

Conclusions

Ser/Ser is associated with:

- decreased negative feedback
- higher FSH levels
- recruitment of a larger number of antral follicles
- Ionger duration of the menstrual cycle

compared to Asn/Asn

higher **FSH** threshold!

The FSHR genotype is associated with a different length of the menstrual cycle

Question: does the FSHR genotype influence the *duration* of fertile age?
FSH receptor genotype and duration of fertile age

Zerbetto et al., Fertil & Steril 2008

Outline

- Physiology of follicular maturation
- FSH and the FSHR
- Mutations and polymorphisms
- Physiological effects of FSHR SNP
- LH, hCG and the LHCGR
- Mutations and polymorphisms
- Can the LHCGR distinguish between LH and hCG?

LH and hCG are similar to FSH

r-hFSH

Signal transduction pathway of the LH receptor

Mutations and polimorphysms of LHCGR

Mutations of the LH receptor

Inactivating mutations: primary amenorrhea Activating mutations: no phenotype

Inactivating mutations: Leydig cell hypoplasia Activating mutations: male-limited psuedopubertas praecox

Non-synonymous SNPs in *LH*R

Powell et al. J Clin Endocrinol Metab 2003;88:1653-1657

hCG-induced cAMP response element activation by the insLQ- and non-LQ-LHR variants

TABLE 2. EC₅₀ and B_{max} values for insLQ- and nonLQ-LHR variant

	insLQ-LHR	non-LQ-LHR	n	P value ^a
logEC ₅₀ (95% CI) (ng/ml)	0.15 (0.05 - 0.26)	0.29(0.16-0.41)	7	0.004
B _{max} (95% C1) (Imol/Renilla)	3.38(2.64 - 4.12)	2.41(1.89 - 2.94)	40	0.0006

 a Difference between mean values was tested using Student's t test.

Piersma et al., JCEM 2006 91:1470-1476

Patients with breast cancer with the non-LQ allele survive longer than those with the insLQ allele

Piersma et al. JCEM 2006 91:1470-1476

Outline

- Physiology of follicular maturation
- FSH and the FSHR
- Mutations and polymorphisms
- Physiological effects of FSHR SNP
- LH, hCG and the LHCGR
- Mutations and polymorphisms
- Can the LHCGR distinguish between LH and hCG?

Role of hCG and LH in male sexual differentiation and function

- Development of the vas deferens
- Development of secondary sex organs

- Masculinisation
- Spermatogenesis

Pathophysiology of inactivating mutations of the LH receptor or LH β subunit in the male

PCR amplification of exon 10 of the *LHCGR* in a male patient with lack of pubertal development

Molecular analysis of the exon 10 deletion of the LH receptor

Gromoll et al., JCE&M 85: 2281, 2000

Hormone profiles of a patient with a deletion of exon 10 of the *LHCGR*

Gromoll et al., JCE&M 85: 2281 (2000)

cAMP production in COS-7 cells expressing the WT or the -Exon 10 human *LHCGR*

Müller et al., JCE&M, 2003

The hinge region of the *LHCGR* contains key residues for hormone-induced receptor activation

TABLE 2

LH or hCG activation of WT or partial CCR deletion mutants of the LH receptor

Ligand induced activation in HEK 293 cells transiently transfected with WT or mutant LH receptors in which part of the CCR is deleted. EC₅₀ values were determined using a CRE-driven reporter gene assay after transfection in HEK293 cells. Numbers in brackets indicate which amino acids of the LH receptor are deleted (Δ). Data are calculated as the mean \pm S.E. (*, p > 0.05; **, p > 0.01; ***, p > 0.001 versus WT).

	LH		hCG		Org41841	
	EC50 (pM)	n	EC ₅₀ (pM)	n	EC50 (nM)	n
Je with	31 ± 2	55	15 ± 1	57	238 ± 47	15
Δ(290-316)	490 ± 55***	5	$62 \pm 9^{***}$	5		
Δ(290-303)	87 ± 16***	4	12 ± 1	4		
Δ(305-316)	$55\pm10^{***}$	6	14 ± 4	6		
Δ(317-335)	>10 ^{5***}	8	>10 ^{5***}	7	72 ± 20	4
۵(317-323)	59 ± 5***	10	19 ± 1	10	137	1

Bruysters et al., JBC 2008

Exon 10 of the LHCGR can distinguish between LH and hCG action

Are polymorphisms in exon 10 influencing LH and hCG activity?

Non-synonymous SNPs in *LH*R

hCG-induced cAMP response element activation by the exon 10 variants

Functional analyses of 291Asn/Ser and 312Ser/Asn LHR variants in HEK29	3 transfected cells
--	---------------------

LHR construct	EC50 (mean ± S.D.) (pM hCG)	п	$B_{\rm max}$ (mean ± S.D.) (fmol/mg protein)	n	$K_{\rm d} \pm {\rm error} ({\rm nM})$
291Asn-312Asn	61.9 ± 13.6	5	48.2 ± 11.8	10	3.77 ± 0.96
291Asn-312Ser	64.7 ± 9.3	3	56.1 ± 16.4	10	2.16 ± 0.16
291Ser-312Asn	29.3 ± 2.4***	3	59.2 ± 11.6	10	5.67 ± 0.44

EC50 values are determined by CRE receptor assay, B_{max} values by radioligand binding assay and K_d value from one Scatchard analysis; ***p = 0.001.

Piersma et al. Mol Cell Endocrinol 2007 July 17 (Epub)

However:

The effects of LHCGR polymorphisms on ovarian function remain unknown

Outlook: A novel LHCGR mRNA variant

mRNA with approx. 850 b

- element consists of 300 b
- encodes 31 aa
- no homology to other proteins
- LHCGR variant encodes protein of 209 aa with 24 kDa

Kossack et al., PLoS Medicine, 2008

Identification of *LHCGR* exon 6A variants by cDNA library screening and RT-PCR from testis and granulosa cell mRNA

Exon 6A is a bona fide novel composite exon of the LHCGR gene

Revised genomic organization of the LHCGR gene

LHCGR mRNA containing exon 6A is highly expressed in the ovary

Kossack et al., PLoS Medicine, 2008

Cellular localisation of the LHCGR exon 6A terminal variant

wt LHCGR exon 6A

LHCGR exon 6A mut A557C

wt LHCGR

Kossack et al., PLoS Medicine, 2008

Mutations in LHCGR exon 6A:

- Are found in LHCGR-negative Leydig cell hypoplasia (resistance to hCG/LH)
- Modify the expression level of the full lenght LHCGR
- Alter LHCGR response to hCG

The A557C Mutation Increases the Expression of the Exon 6A Short Internal Variant

Kossack et al., PLoS Medicine, 2008

Mutations in exon 6A abolish LHCGR Response to hCG

Kossack et al., PLoS Medicine, 2008

What is the impact of mutations and SNP in exon 6A on ovarian function?

Conclusions

- FSHR mutations (inactivating and activating) affect ovarian function
- LHCGR can (possibly) distinguish between LH and hCG
- Other genomic elements are involved in modulating *LHCGR* response
- Effects of *LHCGR* polymorphisms on ovarian function are not well known

Thanks to the IRM Münster, DE

E. Nieschlag

Proposed model for the impact of exon 6A on LHCGR function

Kossack et al., PLoS Medicine, 2008

