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Associated Challenges, and Future Directions
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Background: The use of artificial intelligence (AI) in health care has grown exponentially with the promise of
facilitating biomedical research and enhancing diagnosis, treatment, monitoring, disease prevention, and health
care delivery. We aim to examine the current state, limitations, and future directions of AI in thyroidology.
Summary: AI has been explored in thyroidology since the 1990s, and currently, there is an increasing interest in
applying AI to improve the care of patients with thyroid nodules (TNODs), thyroid cancer, and functional or
autoimmune thyroid disease. These applications aim to automate processes, improve the accuracy and con-
sistency of diagnosis, personalize treatment, decrease the burden for health care professionals, improve access
to specialized care in areas lacking expertise, deepen the understanding of subtle pathophysiologic patterns, and
accelerate the learning curve of less experienced clinicians. There are promising results for many of these
applications. Yet, most are in the validation or early clinical evaluation stages. Only a few are currently adopted
for risk stratification of TNODs by ultrasound and determination of the malignant nature of indeterminate
TNODs by molecular testing. Challenges of the currently available AI applications include the lack of pro-
spective and multicenter validations and utility studies, small and low diversity of training data sets, differences
in data sources, lack of explainability, unclear clinical impact, inadequate stakeholder engagement, and inability
to use outside of the research setting, which might limit the value of their future adoption.
Conclusions: AI has the potential to improve many aspects of thyroidology; however, addressing the limitations
affecting the suitability of AI interventions in thyroidology is a prerequisite to ensure that AI provides added
value for patients with thyroid disease.
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Introduction

Artificial intelligence (AI) was born in 1956 under
the premise that ‘‘Any aspect of learning or any other

feature of intelligence can in principle be so precisely de-
scribed that a machine can be made to simulate it.’’ However,
AI only began to show promising progress in the medical
field in the early 2000s with the progress of computational
capacity and the digitalization of health care. It was not until
2017 that the U.S. Food and Drug Administration (FDA)

approved the first AI-based application for use.1 AI has the
potential to improve clinical effectiveness, access to care, and
biomedical research by optimizing disease diagnosis, treat-
ment, monitoring, prevention, and health care delivery.2,3

In thyroidology, the earliest published use of AI was in
1991 when researchers attempted to create diagnostic net-
works to interpret the thyroid function tests.4,5 Since then, the
interest in potential applications of AI has extended to almost
all areas of thyroidology. In this review, we aimed to provide
thyroid clinicians and researchers with a framework to
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understand the latest development of AI in thyroidology by
comprehensively characterizing emerging AI applications in
several fields of thyroidology such as thyroid nodules
(TNODs), thyroid cancer, and functional or autoimmune
thyroid disease. Specifically, our framework provides a broad
narrative overview of the process from conceiving to
adopting AI applications, the current applications and tech-
niques of AI in thyroidology, and the challenges that need to
be addressed to facilitate future interventions as well as their
added value for treating thyroid disease.

To guide this perspective review, we conducted a non-
systematic search of any study published until December
2022 that included the conception, development, validation,
utility testing, or adoption of AI algorithms in thyroid con-
ditions (Fig. 1) (Supplementary Appendix SA1).

General Concepts

AI is a computing technology capable of mimicking or
surpassing human intelligence.6 Today’s AI algorithms take
advantage of vast amounts of data (input) to identify complex
and subtle patterns that might be difficult for humans. AI
encompasses many interrelated techniques that require di-
verse levels of human supervision (supervised, unsupervised,
semisupervised), and varying degrees of complexity for data
processing.7 In summary, Machine learning (ML) is an area
of AI that allows computers to learn from data and make
predictions.8 Traditional ML models rely more on humans to
identify useful features, which is a critical step to develop
good predictive models (Fig. 2A). Later, deep learning (DL),
an emerging area of ML that leverages neural network (NN)
architectures, was proposed to enable machines to learn
useful features (Fig. 2B).9 DL represents a modern revamp-
ing of NNs, which were originally inspired by mimicking
biological neurons’ interactions.

In NN, data are combined in different ways through a se-
ries of progressive and hierarchical layers (including hidden
layers) to establish relations from complex patterns.10 In the

medical domain, much detailed patient information is often
captured in clinical narratives. Natural language processing
(NLP) is the key AI technology that enables machines to
recognize and extract information from unstructured text in
the electronic medical records (EMR), thus facilitating the
use of clinical text in ML models (Fig. 2C).9

AI Applications: From Conception to Adoption

AI innovation follows several maturing stages from con-
ception to successful clinical adoption (Fig. 3).11 In the
conception stage, the research team defines a specific clini-
cally relevant problem and primary outcome that reflect the
current knowledge and burden of the disease of interest. This
stage also involves building a multidisciplinary team with
clinical and computational expertise and engaging with differ-
ent stakeholders. In the data collection stage, the potential data
sources and variables of interest are identified. Data are then
reviewed and annotated with varying degrees of human input.
In the training stage, collected data are processed and used to
train the AI algorithm based on the chosen methodology. The
results are periodically evaluated throughout the training stage,
and the model is adjusted to improve performance.

In the validation stage, the model’s performance is eval-
uated and further retraining or model tuning is performed
where there is discordance with the initial training perfor-
mance. In the utility testing phase, the model is evaluated in a
real-world setting outside the research environment. The
primary goal of this stage is to assess the benefits of the
proposed model in real-world clinical practice, usually within
the institution in which it was created. Sometimes, collabo-
rations are established with other institutions to evaluate the
model’s generalizability. For a model to be considered
adopted, multicenter and prospective validations, regulatory
agencies’ approval, and availability for use in clinical care
are required. Once a model is adopted, there will be no pe-
riodic evaluation and retraining or tuning unless substandard
performance occurs.

FIG. 1. Applications of AI in thyroidology grouped by year of publication, disease of interest, and stage of development.
AI, artificial intelligence.
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Medical AI models should be evaluated using a combi-
nation of different metrics to prevent over- or underestima-
tion of the results.12 Traditional statistical measures such as
sensitivity, specificity, negative predictive value, positive
predictive value (also referred to as precision), true positive,
true negative, false positive, and false negative are used.
Other commonly used metrics include accuracy, the fraction
of correctly classified outcomes among all outcomes, and the
area under the curve (AUC), an aggregate measure of the
model’s predictive performance.13 A model with an AUC
closer to one is deemed to have excellent predictive perfor-
mance, while a model with an AUC closer to 0.5 is consid-
ered to have random predictions.

Application of AI in TNODs

TNODs are the most common thyroid disease, with an
estimated prevalence of up to 70% with ultrasound (US) and
an overall risk of malignancy of 10%.14 The widespread use
of different imaging modalities has led to increased detection
of TNODs.15 In our review, 64% of the original studies of AI
in thyroidology focused on several aspects of thyroid nodular
disease, including optimizing resource utilization and pro-

viding a more accurate and personalized workup and man-
agement strategy. The available applications of AI in TNODs
can be summarized based on their use of various imaging
modalities and laboratory-based methods.

Thyroid US

Thyroid US is the most widely used diagnostic tool for
evaluating TNODs.16 While accessible, safe, and cost-
effective, US interpretation is subject to significant inter-
operator variability.17 Over the last decade, multiple AI
models have aimed at automating interpretation, improving
and facilitating risk stratification of TNODs by thyroid US
images, or its derived characteristics, and reducing the rate of
unnecessary fine needle aspiration biopsies (FNABs),18–20

with similar or superior performance than commonly used
TNOD reporting and risk stratification systems (AUC: 0.76–
0.98).18,19,21–34

Given the large heterogenicity in the models’ design and
training data sets, comparing their performance and evalu-
ating their impact in real-world are challenging. Mature
models with external validation have demonstrated mixed
stand-alone performance results. Some outperformed

FIG. 2. Graphic re-
presentation of (A) machine
learning (ML), (B) deep
learning (DL), and (C)
natural language processing
(NLP).
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experienced radiologists (AUC: 0.88–0.94),35–37 others had
comparable specificity but lower sensitivity than senior
physicians and similar sensitivity but increased specificity
than junior physicians (AUC: 0.65–0.98),22,38–42 and others
had an overall comparable performance regardless of the
physicians’ level of expertise (AUC: 0.82–0.96).25,43–45

Moreover, some models increased the radiologist’s perfor-
mance when used as a supplementary diagnostic aid (AUC:
0.8–0.94).38,46

In addition, there is promising research on the incorpora-
tion of nontraditional data into the risk stratification process,
such as the use of radiomics (quantitative extraction of high-
dimensional image features from routine imaging) to clarify
the nature of indeterminate TNODs (AUC: 0.75–0.88),47–50

the prediction of BRAFV600E mutation without requiring
molecular testing (AUC: 0.64),51 the use of video clips rather
than static US images for TNOD characterization,52 and the
automatic incorporation of color Doppler features to enhance
the TNOD risk stratification prediction (AUC: 0.89).53 Fi-
nally, there have been preliminary studies to specifically
differentiate follicular thyroid carcinoma (FTC) from ade-
noma (AUC: 0.80–0.96),54,55 and to clarify the malignant
versus benign nature of TNODs previously classified as in-
determinate by FNAB (Accuracy: 77.4%).56

Despite the large number of AI models for US risk strati-
fication of TNODs that have been developed with promising
results, few of them have had sufficient external multicenter
validation or prospective evaluation, only four have been
approved by the FDA (S-detect, AmCAD-UT, Koios DS,
MEDO-Thyroid), and none of the commercially available are
being widely used.7

There are several limitations to the use of these AI models
in real-world clinical practice. Some models are limited by
suboptimal performance particularly due to the use of static
images57,58 and training data sets that have few benign nod-
ules,37 indeterminate nodules,18,40,43 TIRADS 3 nodules,26

and nonpapillary thyroid cancer (PTC) malignancies.23,40 In
addition, consistency can be affected by differences in the
levels of provider expertise in semiautomatic models that
require manual input,59 and marked fluctuations in data
quality due to diversity in data sources (US equipment, ra-
diology protocols, and image segmentation methods).

Molecular testing

FNAB with cytology interpretation is the standard for
preoperative diagnosis of TNODs60; however, the utility of
FNAB can be limited by indeterminate or nondiagnostic re-
sults.61 Thus, there has been extensive research on clarifying
the benign versus malignant nature of these nodules to avoid
unnecessary surgical or other invasive interventions. Over
the last decade, several AI models were designed to predict
the probability of malignancy of TNODs based on their
molecular profile with adequate and incremental perfor-
mance (AUC: 0.88–094).62–64 Commercially available mo-
lecular diagnostic tests such as Afirma,65–67 ThyroSeq,68,69

Rosetta GX reveal,70 and Thyramir71 include AI-based
classifiers and are perhaps the most widely used AI appli-
cations in thyroidology at this time.

Importantly, despite the high performance of these models
in validation studies, their clinical utility might be limited by
patient selection bias, and significant interinstitutional vari-

ations in performance metrics due to their specific pretest
malignancy probability of cytologically indeterminate
TNODs.72

Cytology

Cytological categorization of FNAB is user dependent,
and higher quality improves care.73 AI-based systems have
been developed to improve FNAB interpretation, and pre-
diction of malignancy risk, by automating the analysis of
cytology images and identifying subtle cytology patterns.
Early explorations on digital cytomorphologic evaluation
through ML and DL have shown promising results in the
automatic classification of TNOD’s cytology (AUC: 0.75–
0.93),74–79 including indeterminate cytology TNODs (AUC:
0.75–0.96).75,80 These models achieved comparable to su-
perior performance than a pathologist when used stand-alone
(Precision: 0.87), and improved pathologists’ accuracy when
used as a supplementary diagnostic aid (Precision: 0.81–
0.88).81

In addition, there have been preliminary explorations of
models to automatically identify region of interest (ROI) on
whole slide cytology images to expedite the cytopathologists’
review process with adequate concordance compared with
manual ROI identification,82 to predict BRAF-RAS gene ex-
pression and identify follicular-patterned thyroid neoplasms
based on automatic evaluation of cytologic patterns (AUC:
0.98–0.99),83,84 and to use adjuvant NLP-extracted features
(demographic, US and biochemical characteristics) to im-
prove cytologic classification of indeterminate TNODs
(AUC: 0.85).85

The performance and generalizability in most of these
models are limited by small training data sets with a modest
amount of indeterminate or borderline TNODs (such as
samples that express characteristics from various categories).

Other diagnostics

There are other early exploratory initiatives to further
improve several aspects of the diagnosis and management of
TNODs, including the use of NLP for automatic identifica-
tion and workup tracking of thyroid incidentalomas on
computed tomography (CT) reports (AUC: 0.99),86 the use of
CT or magnetic resonance imaging (MRI) images for TNOD
risk stratification (AUC: 0.85–0.87),87–91 the incorporation of
demographic, ultrasonographic, biochemical, and cytologic
characteristics into an AI-based decision tree model aimed at
decreasing the false-negative rate of TNODs that undergo
FNAB (Accuracy: 95.5%),92 the automatic analysis of in-
traoperative TNOD’s frozen sections (Precision: 16.7–
96.7%),93 and the prediction of TNOD’s volume reduction
response with radiofrequency ablation (Accuracy: 85.1%).94

The performance of these models might be limited by
variations in documentation style and completeness on NLP
extracted data, inadequate quality of CT or MRI images,
imbalanced cohorts of benign versus malignant TNODs, and
limited amount of non-PTC histologies in training data sets.

Application of AI in Thyroid Cancer

In recent years, the incidence of thyroid cancer has been on
the rise, particularly among women in the United States.95,96

As such, there is an urgent need to develop better tools for
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risk stratification, recurrence prediction, and response to
therapies. While the previous section described the appli-
cations for identification, evaluation, and risk stratification
of TNODs, this section further expands on the additional
aspects of risk stratification and management in patients
with established thyroid cancer, including prediction of
nodal and distant metastases, recurrence, prognosis, and
treatment.

Preoperative risk stratification

Several models incorporated clinical, biochemical, ana-
tomical, pathology, and US features to predict the presence of
cervical lymph node metastasis (LNM) in patients with PTC
(AUC: 0.67–0.91) with comparable performance to radiolo-
gists’ interpretation of neck US.97–101 Lee et al. evaluated the
automatic detection of cervical LNM on the CT neck of
patients with PTC with promising results (AUC: 0.95).102

Their model performed similarly to experienced radiologists
but superior to junior radiologists and trainees.103 Other
models used neck CT or US radiomics to automatically
identify cervical LNM in patients with PTC with superior
performance than experienced radiologists (AUC: 0.70–
0.93).104,105

Finally, researchers used demographic and clinicopatho-
logical variables (including demographics, histology, and
staging) to predict distant metastasis in patients with PTC or
FTC (AUC: 0.85–0.91).106–108 Despite promising results,
these models’ utility in clinical practice has not been dem-
onstrated, and only two are readily accessible as online tools
outside of the research setting.99,102

In addition, US and CT are commonly used to diagnose
extrathyroidal extension (ETE) preoperatively, but their
sensitivity and specificity are limited.109 US radiomic models
performed better than regular US interpretation in predicting
ETE given the ability to capture risk factors not usually ac-
cessible to the human eye (such as PTC density and enhanced
tissue heterogeneity; AUC: 0.83),110 and CT radiomic mod-
els performed similar to experienced radiologists (AUC:
0.75).111 In addition, CT or MRI radiomics, and US-based
models have showed better performance in predicting thy-
roid capsule invasion (AUC: 0.82),112 and preoperatively
predicting advanced or aggressive PTC (AUC: 0.85–
0.96).113–115

In general, these models are still in the training or utility
testing stages and their generalizability is limited by small
training data sets, inadequate data set heterogeneity with very
modest presence of non-PTC histologies, low rate of events
of interest, lack incorporation of additional clinical data such
as molecular or biochemical markers into the predictive
models, and scarce testing on images with diverse quality and
segmentation techniques, or obtained with different diag-
nostic equipment.

Prognosis and recurrence risk

Several models use the patient’s age and specific ma-
lignant disease characteristics (tumor size, metastatic in-
volvement, and nodular disease) to predict the staging of
well-differentiated thyroid cancer with similar performance
to the 8th American Joint Committee on Cancer (AJCC)
staging system (AUC: 0.85–0.98).116–118 Furthermore, there
are models that used clinicopathological, biochemical, and

molecular data to predict the risk of thyroid cancer recurrence
(Accuracy: 95.7%).119,120 A similar model by Kim et al., in
addition, used radiation and systemic therapy data to predict
survival in patients with distal metastasis status post-
thyroidectomy.119 These models are limited by selection bias
and missing or nonstandardized data due to the retrospective
nature of the single-center training databases, insufficient
long-term survival or recurrence data, and lack of external or
prospective validation.

Treatment

Researchers have evaluated the use of AI to predict treat-
ment responses and potential complications. For example,
Lubin et al. used ML to identify clinical factors (including
tumor focality, preoperative staging, and biochemical
markers) predictive of radioactive iodine (RAI) failure.121

Similarly, Seib et al. used preoperative patient and malig-
nant disease characteristics to predict postoperative com-
plications (such as hypocalcemia, recurrent laryngeal nerve
injury, or hematoma; AUC: 0.72).122 Lastly, Liu et al. used
data from quality-of-life questionnaires, sociodemographic
and clinical characteristics to predict reduction of quality of
life in patients with thyroid cancer 3 months after thyroid-
ectomy (AUC: 0.89).123 The generalizability of these
models could be limited by their small training data sets, and
lack of accountability for important risk factors such as
prediagnostic psychological health when assessing post-
surgical quality of life.

Other studies have evaluated the use of AI to improve the
efficacy and safety of the different treatment strategies. Gong
et al. developed a model for real-time identification and
measurement of the recurrent laryngeal nerve using computer
vision during thyroidectomy (Precision: 75.6%).124 Their
model showed promising results and demonstrated feasibility
to augment intraoperative decision-making. In addition, an-
other early model from Lin et al. aimed to optimize radio-
therapy precision in patients with metastatic thyroid cancer
through the use of positron emission tomography CT (PET-
CT) with encouraging results.125 Due to the small training
data sets, these models could have suboptimal performance
with anatomical variations, inconsistent image quality, and
the presence of indeterminate or challenging diagnostic
findings.

Application of AI in Autoimmune and Functional
Disease

Researchers have also explored the use of AI to understand
the intricate aspects of hypo- and hyperthyroidism patho-
physiology, automate diagnostic workflow, and enhance
current diagnostic and therapeutic approaches.

Hypothyroidism

Two computer-assisted diagnosis (CAD) models trained
using DL have been evaluated for the automatic diagnosis of
Hashimoto’s thyroiditis (HT) from thyroid US data analy-
sis.126,127 One of these models achieved excellent accuracy
(AUC: 0.94), demonstrating consistency on external valida-
tion, and had higher performance than radiologists regardless
of their level of expertise.127 These models are subject to
patient selection bias, and their performance upon presence

6 TORO-TOBON ET AL.
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of confounders such as TNODs has not been tested. In ad-
dition, some models have been trained to predict thyroid
dysfunction and patient-specific thyrotropin (TSH) levels
based on demographics, and clinical and biochemical data
with mixed performance (AUC: 0.61–0.87).128,129 These
models are limited by retrospective training data sets with
missing data, imbalanced patient subpopulations, and low
rates of events of interest.

Thyrotoxicosis

Several ML models have been developed to aid in the
diagnosis of hyperthyroidism. Some models performed well
in classifying common thyroid scintigraphy uptake patterns
and differentiating between entities such as Graves’ disease
(GD) and subacute thyroiditis (ST; Accuracy: 87.7–
99.3%).130,131 An NN model from Ma et al. outstandingly
distinguished between GD, ST, and HT using single-photon
emission CT (SPECT) images (Accuracy: 99–99.6%).132 In
addition, some models were developed to predict the pres-
ence and the etiology of thyrotoxicosis based on patient
characteristics and biochemical data from the EMR.133,134

Other researchers have used AI to personalize treatment for GD
by predicting patients’ responses to nonsurgical therapies such
as antithyroid drugs (ATDs) and RAI. Orunesu et al. trained an
NN model that used baseline patient characteristics to predict
outcomes after discontinuation of ATDs with high sensitivity
and specificity (84.6% and 77.2%).135 Duan et al. used similar
characteristics to predict the chance of post-RAI hypothyroid-
ism with suboptimal performance (AUC: 0.72).136

The generalizability of some of these models is limited due
to considerable discrepancies in their training and validation
performances. In addition, training data sets were small,
contained missing data on key variables such as TRAb levels,
and were subject to subpopulation imbalances or low rate of
events of interest.

Furthermore, AI has emerged as an alternative to deepen
the understanding of the complex pathophysiology of dif-
ferent diseases, including hyperthyroidism. While single
genes have been associated with GD, Shen et al. trained an
ML model to identify different multigene associations that
could be involved in the pathogenesis of GD (AUC: 0.9).137

Although this model does not reach current clinical practice,
its outcomes could facilitate future targeted therapeutic de-
velopment and strategies for early disease identification and
genetic counseling.

Thyroid eye disease

Accurate evaluation and severity assessment are important
for treating thyroid eye disease (TED) with emerging therapies.
However, current tools such as clinical activity score, vision,
inflammation, strabismus, and appearance, and European
Group of Graves’ Orbitopathy classifications have limitations,
leading to misclassifications or missed diagnoses.138,139 As a
solution, AI-based alternatives are being explored to improve
diagnosis, severity assessment, and monitoring of TED pro-
gression and treatment response.140–143 A model by Song et al.
diagnosed TED through the screening of orbital CT images
with outstanding results (AUC: 0.91).140 Wen et al. trained a
model that used specific local and remote brain functional
connectivity abnormalities on functional brain MRI to diagnose
TED with an accuracy of 78.5%.142 In addition, this model

provided further insight into the mechanisms of cognitive and
visual symptoms of patients with TED. Likewise, a model by
Huang et al. identified several features of TED based on the
analysis of patients’ facial images with promising performance
(AUC: 0.6–0.93).144

Similarly, Lin et al. estimated disease activity on TED pa-
tients using orbital MRI images with higher performance than
clinicians’ assessment (AUC: 0.92).141 For TED management,
Hu et al. predicted response to systemic glucocorticoids
through the integration of orbital MRI radiomics and the dis-
ease duration, with adequate performance (AUC: 0.85–
0.91).143 The performance of these models is limited by the
small data sets with imbalanced subpopulations of interest, and
variations in images quality or radiology protocols. In addition,
they lack utility testing on real clinical practice.

Discussion

Challenges and future directions

Notwithstanding the advantages the reviewed AI applica-
tions may offer, their implementation in real-world clinical
practice is challenging due to several limitations. Figure 3
displays the current stage of development of the reviewed
applications based on the available published data as well as
the general challenges faced, and milestones achieved on
each stage.

As already described, each model might have specific
limitations depending on its aim and design. In addition,
general challenges must be addressed to improve the suc-
cessful adoption of AI in thyroidology (Table 1). The per-
formance of an AI model is intrinsically tied to the quality of
the data. Small, homogeneous, single-center, biased, or ret-
rospective data sets may impair the algorithm’s performance,
particularly when applied to external institutions or real-
world scenarios. Therefore, it is crucial to use larger, more
diverse, multicentric, and prospective data sets to ensure the
performance and generalizability of the AI model.145–148 In
addition, models that use demographic variables can be
subject to discriminatory bias when trained with databases
that reflect historical health inequities in underrepresented
groups (differences by race, gender, and socioeconomic
backgrounds).148

Thus, training data sets should be representative of the
general population, and conscious efforts should be made to
identify and correct performance variations when the model
is applied to subpopulations with diverse demographics.
Furthermore, a lack of interpretability of the model’s rea-
soning process (the ‘‘black box’’ effect) could prevent high-
performing algorithms from being adopted or achieving their
highest potential. For instance, even if a model can predict the
risk of thyroid cancer recurrence with high accuracy, it might
not be widely trusted and adopted by the medical community
if there is not some insight into the reasoning and weight of
variables behind the model’s prediction.

Incorporating known pathophysiology into the model can
provide valuable context for clinicians and provide them with
some degree of self-explainability. For instance, providing
the key features that contribute to the model’s prediction can
help increase the model’s transparency and trustworthiness,
promote the discovery of new or subtle clinical patterns, and
facilitate continuous improvement by identifying factors that
impact the precision of the algorithm.149,150
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Moreover, differences in data sources from variations in
diagnostic equipment, the structure in which clinical data are
documented in the EMR, and institutional practice changes
over time can affect the data quality and the performance of
the model.151 Thus, it is important to evaluate the perfor-
mance of the models when using different data sources and
retrain the model when needed. Furthermore, there should be
standardization protocols that accommodate fluctuations
originating from the ever-changing nature of health care data
and account for different diagnostic and laboratory equip-
ment. This would improve the models’ consistency and fa-
cilitate the development of high-quality data sets that could
be used in further model training.145–148

In addition to addressing the current limitations, future
research of AI in thyroidology could expand to other areas
that are yet to be explored, especially nonimage-based
models, applications aimed at generating new knowledge
rather than simply automating processes, and predictive
models to facilitate ‘‘precision medicine.’’ Examples of
current research interest include the use of physiologic data
captured through wearable devices to facilitate diagnosis,
follow up or medication management, the use of NLP models
that leverage large volumes of unstructured data from the
EMR for augmenting or enriching uncoded or not well-coded

data elements, multimodal approaches that incorporate dif-
ferent types of inputs, and more complex pathophysiologic
models that include genomics, proteomics, and metabolomics.

Implementation of AI applications in the real world

AI applications should ensure that the model possesses
clearly defined, clinically relevant, and actionable outcomes
that reflect the burden of the problem being addressed. For
instance, while a model could prove high performance in
diagnosing HT from US data, this might not have added
benefit when applied to current real-world practice. Thus,
before full adoption into routine clinical practice, external
validation, prospective and multicenter clinical trials, and
correlation between the model’s accuracy and its real-world
clinical efficacy are imperative.148,152 In addition, incorpo-
rating these AI models into the routine clinical workflow is
limited by the availability of expert resources, lack of real-
time access to the models outside of the research setting,
difficult incorporation of the models into the EMR, and high
costs associated with software or hardware acquisition.22

Thus, stakeholder engagement through the distinct phases
of development and deployment is fundamental for successful
adoption. Implementing any AI strategy requires careful

Table 1. Challenges and Future Directions

Challenge Future directions

Inconsistent or inadequate
performance due to
suboptimal quality of
training data sets

Train models on larger and more representative data sets (including higher diversity of
conditions of interest, disease phenotypes, underrepresented population groups, types of
practice, and data sources)

Conduct multicentric and prospective studies
Lack of explainability (‘‘the

black-box effect’’)
Account for known pathophysiology when training the model
Train self-explainable models
Design tools that provide some insight into the model’s reasoning process

Inconsistent or suboptimal
generalizability due to
differences in data sources

Understand differences in documentation protocols
Design NLP tools to leverage nonstructured data from the EMR
Create standardization protocols to account for the ever-changing nature of health care

data
Validate the models with different equipment or data sources

Overenthusiastic model
promises

Define clear, specific, clinically relevant, and actionable outcomes
Evaluate the impact on routine clinical care

Lack of stakeholder
engagement

Estimate financial and expert resources needed to facilitate suitability of the AI application
Create multidisciplinary research and clinical implementation teams
Account for stakeholders’ expectations and fears

Lack of incorporation into
routine clinical practice

Consider the logistics needed to incorporate the model into routine health care workflow
(i.e., user-friendly interfaces, and compatibility with the EMR or stand-alone use as a
CDA)

Streamline the application to prevent worsening the health care providers’ burden
Select and implement applications that reflect the institution-specific gap in level of

expertise or deficit in clinical workflow
Account for availability of resources and compatibility of the application with legacy

infrastructure
Inappropriate regulations Establish cross-sector collaborations to design regulations that guarantee the safety of the

applications while accounting for the dynamic learning and progressive improvement of
AI with continued use

Evaluate compliance with ethical standards
Unclear performance in time Consider performing periodic performance reassessment

Retrain or refine the model when there is suboptimal performance
Analyze feedback from clinicians and users, and adjust the application accordingly

Lack of patients’ acceptance
and trust

Promote patient engagement through transparency and education through the different
stages of model development

AI, artificial intelligence; CDA, clinical diagnostic aid; EMR, electronic medical record; NLP, natural language processing.
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understanding of the available financial and expert resources
and a multidisciplinary approach that accounts for the expec-
tations and fears of all the affected stakeholders.2,153

Furthermore, cross-sector collaborations and coordinated
efforts between domain experts (i.e., researchers and clinical
experts), technology experts (i.e., technology firms and AI
vendors), law makers, regulatory agencies, health care deci-
sion makers (i.e., health system and insurance executives),
and patients are fundamental for the advancement of AI in
thyroidology and the successful incorporation of AI models
into routine clinical care.2 Finally, current and future AI
models for thyroid conditions should consider appropriate
regulatory frameworks that ensure AI interventions’ safe and
ethical use while accounting for their dynamic learning and
progressive improvement over time.154

Critical appraisal of AI literature

Despite the current large body of AI literature and its ex-
pected exponential growth over the next couple of years,
there are not currently validated and widely accepted critical
appraisal tools. Several authors have characterized different
frameworks to understand AI reports.155–158 Table 2 sum-
marizes important considerations for thyroid clinicians and
researchers when analyzing an AI article in thyroidology.

Conclusions

The integration of AI into thyroid-related research and daily
clinical practice marks the beginning of a new era in thyr-

oidology. AI has the potential to improve the consistency and
accuracy of diagnosis, decrease health care professionals’
workload, predict response to therapy, and facilitate the devel-
opment of clinical decision support systems. In addition, AI can
increase access to specialized care, identify subtle risk patterns,
and promote personalized care. However, several limitations
preclude most current models from being used in real-world
clinical practice. To fully realize the potential of AI in thyr-
oidology, rigorous methodological planning and suitability
testing are necessary to identify and address obstacles and in-
crease the likelihood of successful adoption of AI interventions.
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Clinical validation of S-Detect� mode in semi-automated
ultrasound classification of thyroid lesions in surgical of-
fice. Gland Surg 2020;9(Suppl 2):S77–S85; doi: 10
.21037/gs.2019.12.23

43. Park VY, Han K, Seong YK, et al. Diagnosis of thyroid
nodules: Performance of a deep learning convolutional
neural network model vs. radiologists. Sci Rep 2019;9(1):
17843; doi: 10.1038/s41598-019-54434-1

44. Zhou H, Jin Y, Dai L, et al. Differential diagnosis of
benign and malignant thyroid nodules using deep learning
radiomics of thyroid ultrasound images. Eur J Radiol
2020;127:108992; doi: 10.1016/j.ejrad.2020.108992

45. Zhu YC, Jin PF, Bao J, et al. Thyroid ultrasound image
classification using a convolutional neural network. Ann
Transl Med 2021;9(20):1526; doi: 10.21037/atm-21-
4328

46. Wei X, Gao M, Yu R, et al. Ensemble deep learning
model for multicenter classification of thyroid nodules on
ultrasound images. Med Sci Monit 2020;26:e926096; doi:
10.12659/msm.926096

47. Keutgen XM, Li H, Memeh K, et al. A machine-learning
algorithm for distinguishing malignant from benign in-
determinate thyroid nodules using ultrasound radiomic
features. J Med Imaging (Bellingham) 2022;9(3):034501;
doi: 10.1117/1.Jmi.9.3.034501

48. Gild ML, Chan M, Gajera J, et al. Risk stratification of
indeterminate thyroid nodules using ultrasound and ma-
chine learning algorithms. Clin Endocrinol (Oxf) 2022;
96(4):646–652; doi: 10.1111/cen.14612

49. Wang S, Xu J, Tahmasebi A, et al. Incorporation of a
machine learning algorithm with object detection within
the thyroid imaging reporting and data system improves
the diagnosis of genetic risk. Front Oncol 2020;10:
591846; doi: 10.3389/fonc.2020.591846

50. Daniels K, Gummadi S, Zhu Z, et al. Machine learning by
ultrasonography for genetic risk stratification of thyroid
nodules. JAMA Otolaryngol Head Neck Surg 2020;
146(1):36–41; doi: 10.1001/jamaoto.2019.3073

51. Yoon J, Lee E, Koo JS, et al. Artificial intelligence to
predict the BRAFV600E mutation in patients with thyroid
cancer. PLoS One 2020;15(11):e0242806; doi: 10.1371/
journal.pone.0242806

52. Luo H, Ma L, Wu X, et al. Deep learning-based ultrasonic
dynamic video detection and segmentation of thyroid
gland and its surrounding cervical soft tissues. Med Phys
2022;49(1):382–392; doi: 10.1002/mp.15332

53. Zhu YC, Du H, Jiang Q, et al. Machine learning assisted
doppler features for enhancing thyroid cancer diagnosis: A
multi-cohort study. J Ultrasound Med 2022;41(8):1961–
1974; doi: 10.1002/jum.15873

54. Seo JK, Kim YJ, Kim KG, et al. Differentiation of the
follicular neoplasm on the gray-scale US by image se-
lection subsampling along with the marginal outline using
convolutional neural network. Biomed Res Int 2017;2017:
3098293; doi: 10.1155/2017/3098293

55. Yang B, Yan M, Yan Z, et al. Segmentation and classi-
fication of thyroid follicular neoplasm using cascaded
convolutional neural network. Phys Med Biol 2020;
65(24):245040; doi: 10.1088/1361-6560/abc6f2

56. Chen L, Chen M, Li Q, et al. Machine learning-assisted
diagnostic system for indeterminate thyroid nodules. Ul-
trasound Med Biol 2022;48(8):1547–1554; doi: 10.1016/j
.ultrasmedbio.2022.03.020

ARTIFICIAL INTELLIGENCE IN THYROIDOLOGY 11

D
ow

nl
oa

de
d 

by
 S

oc
ie

ty
 -

 A
ct

iv
e 

- 
A

m
er

ic
an

 T
hy

ro
id

 A
ss

oc
ia

tio
n 

(A
T

A
) 

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

7/
18

/2
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 

http://dx.doi.org/10.1016/S1470-2045(18)30762-9
http://dx.doi.org/10.1016/S1470-2045(18)30762-9
http://dx.doi.org/10.1530/etj-21-0129
http://dx.doi.org/10.1148/radiol.2019181343
http://dx.doi.org/10.1002/mp.14543
http://dx.doi.org/10.1148/radiol.2019182128
http://dx.doi.org/10.1148/radiol.2019182128
http://dx.doi.org/10.2214/AJR.15.15813
http://dx.doi.org/10.2214/AJR.15.15813
http://dx.doi.org/10.1186/s13040-020-00223-w
http://dx.doi.org/10.1089/thy.2018.0380
http://dx.doi.org/10.1002/mp.14301
http://dx.doi.org/10.1002/mp.15319
http://dx.doi.org/10.3389/fonc.2020.557169
http://dx.doi.org/10.3389/fonc.2020.557169
http://dx.doi.org/10.1186/s12957-019-1752-z
http://dx.doi.org/10.1148/radiol.211455
http://dx.doi.org/10.1016/j.media.2019.101555
http://dx.doi.org/10.1016/j.media.2019.101555
http://dx.doi.org/10.21037/gs.2019.12.23
http://dx.doi.org/10.21037/gs.2019.12.23
http://dx.doi.org/10.1038/s41598-019-54434-1
http://dx.doi.org/10.1016/j.ejrad.2020.108992
http://dx.doi.org/10.21037/atm-21-4328
http://dx.doi.org/10.21037/atm-21-4328
http://dx.doi.org/10.12659/msm.926096
http://dx.doi.org/10.1117/1.Jmi.9.3.034501
http://dx.doi.org/10.1111/cen.14612
http://dx.doi.org/10.3389/fonc.2020.591846
http://dx.doi.org/10.1001/jamaoto.2019.3073
http://dx.doi.org/10.1371/journal.pone.0242806
http://dx.doi.org/10.1371/journal.pone.0242806
http://dx.doi.org/10.1002/mp.15332
http://dx.doi.org/10.1002/jum.15873
http://dx.doi.org/10.1155/2017/3098293
http://dx.doi.org/10.1088/1361-6560/abc6f2
http://dx.doi.org/10.1016/j.ultrasmedbio.2022.03.020
http://dx.doi.org/10.1016/j.ultrasmedbio.2022.03.020


57. Wang J, Jiang J, Zhang D, et al. An integrated AI model to
improve diagnostic accuracy of ultrasound and output known
risk features in suspicious thyroid nodules. Eur Radiol 2022;
32(3):2120–2129; doi: 10.1007/s00330-021-08298-7

58. Koh J, Lee E, Han K, et al. Diagnosis of thyroid nodules
on ultrasonography by a deep convolutional neural net-
work. Sci Rep 2020;10(1):15245; doi: 10.1038/s41598-
020-72270-6

59. Jeong EY, Kim HL, Ha EJ, et al. Computer-aided diag-
nosis system for thyroid nodules on ultrasonography: Di-
agnostic performance and reproducibility based on the
experience level of operators. Eur Radiol 2019;29(4):
1978–1985; doi: 10.1007/s00330-018-5772-9

60. Haugen BR, Alexander EK, Bible KC, et al. 2015
American Thyroid Association Management guidelines
for adult patients with thyroid nodules and differentiated
thyroid cancer: The American Thyroid Association
guidelines task force on thyroid nodules and differentiated
thyroid cancer. Thyroid 2016;26(1):1–133; doi: 10.1089/
thy.2015.0020

61. Cibas ES, Ali SZ. The Bethesda system for reporting
thyroid cytopathology. Am J Clin Pathol 2009;132(5):
658–665; doi: 10.1309/ajcpphlwmi3jv4la

62. Tomei S, Marchetti I, Zavaglia K, et al. A molecular
computational model improves the preoperative diagnosis
of thyroid nodules. BMC Cancer 2012;12(1):396; doi: 10
.1186/1471-2407-12-396

63. Pankratz DG, Hu Z, Kim SY, et al. Analytical perfor-
mance of a gene expression classifier for medullary thy-
roid carcinoma. Thyroid 2016;26(11):1573–1580; doi: 10
.1089/thy.2016.0262

64. Hao Y, Duh Q-Y, Kloos RT, et al. Identification of
Hürthle cell cancers: Solving a clinical challenge with
genomic sequencing and a trio of machine learning al-
gorithms. BMC Syst Biol 2019;13(2):27; doi: 10.1186/
s12918-019-0693-z

65. Diggans J, Kim SY, Hu Z, et al. Machine learning from
concept to clinic: Reliable detection of BRAF V600E
DNA mutations in thyroid nodules using high-
dimensional RNA expression data. Pac Symp Biocomput
2015;371–382.

66. Nasr CE, Andrioli M, Endo M, et al. Real-world perfor-
mance of the Afirma Genomic Sequencing Classifier
(GSC)—A meta-analysis. J Clin Endocrinol Metab 2023;
108(6):1526–1532; doi: 10.1210/clinem/dgac688

67. Patel KN, Angell TE, Babiarz J, et al. Performance of a
genomic sequencing classifier for the preoperative diag-
nosis of cytologically indeterminate thyroid nodules.
JAMA Surg 2018;153(9):817–824; doi: 10.1001/jamasurg
.2018.1153

68. Steward DL, Carty SE, Sippel RS, et al. Performance of a
multigene genomic classifier in thyroid nodules with in-
determinate cytology: A prospective blinded multicenter
study. JAMA Oncol 2019;5(2):204–212; doi: 10.1001/
jamaoncol.2018.4616

69. Skaugen JM, Taneja C, Liu JB, et al. Performance of a
multigene genomic classifier in thyroid nodules with
suspicious for malignancy cytology. Thyroid 2022;32(12):
1500–1508; doi: 10.1089/thy.2022.0282

70. Lithwick-Yanai G, Dromi N, Shtabsky A, et al. Multi-
centre validation of a microRNA-based assay for diag-
nosing indeterminate thyroid nodules utilising fine needle
aspirate smears. J Clin Pathol 2017;70(6):500–507; doi:
10.1136/jclinpath-2016-204089

71. Ablordeppey KK, Timmaraju VA, Song-Yang JW, et al.
Development and analytical validation of an expanded
mutation detection panel for next-generation sequencing
of thyroid nodule aspirates. J Mol Diagn 2020;22(3):355–
367; doi: 10.1016/j.jmoldx.2019.11.003

72. Khan TM, Zeiger MA. Thyroid nodule molecular testing:
Is it ready for prime time? Front Endocrinol (Lausanne)
2020;11:590128; doi: 10.3389/fendo.2020.590128

73. Sakorafas GH. Thyroid nodules; interpretation and impor-
tance of fine-needle aspiration (FNA) for the clinician—
Practical considerations. Surg Oncol 2010;19(4):e130–e139;
doi: 10.1016/j.suronc.2010.06.003

74. Ren Y, He Y, Cong L. Application value of a deep con-
volutional neural network model for cytological assess-
ment of thyroid nodules. J Healthc Eng 2021;2021:
6076135; doi: 10.1155/2021/6076135

75. Elliott Range DD, Dov D, Kovalsky SZ, et al. Application
of a machine learning algorithm to predict malignancy in
thyroid cytopathology. Cancer Cytopathol 2020;128(4):
287–295; doi: 10.1002/cncy.22238

76. Gopinath B, Shanthi N. Computer-aided diagnosis system
for classifying benign and malignant thyroid nodules in
multi-stained FNAB cytological images. Australas Phys
Eng Sci Med 2013;36(2):219–230; doi: 10.1007/s13246-
013-0199-8
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